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Overview

@ Spectral calibration performance: Neon stability
@ High-resolution spectral improvements: Period Sinc basis
@ Full spectral comparison with AIRS via SNOs
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Absolute v Calibration: IDPS SDRs
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@ Data using IDPS long-wave SDRs; Very few updates due to 2 ppm threshold
@ SDR’s exhibit ~3 ppm variability
@ Correct operation of CMO generation started in Nov. 2013
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2-Year Neon Calibration Record

Metrology Laser Wavelength Follows Thermal Environment?
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@ Question: Is any of this drift due to the Neon lamp? Original plans were to
update the Neon calibration via up-welling radiances 1/month.

@ Difficult to use IDPS SDR record for this since Neon cal used in IDPS
uncertain until Nov. 2013.
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2-Year Neon Calibration from CCAST

CCAST: UW/UMBC SDR Testbed Code

AV (ppm)

@ Reprocess 2 years of SDRs with CCAST
using metrology laser that follows Neon
calibration exactly.

@ Normal v-cal compares observed to NWP
simulated radiances: not yet finished.

@ Here: compare (via cross-correlation) April
2012 scene radiances to time series of a
small clear subset of CCAST output.

@ Regression of drift over 2 years: -0.07 ppm
+ 0.54 ppm

2613 ) 20‘14
e @ Excellent long-term stability

This approach introduces noise, we will soon finish matching 2-years of CCAST
output to NWP (ECMWF) and will have a much lower noise Neon calibration to
determine if it is drifting and needs any updates.

The results shown here suggest no long-term drifts, but possibly a small seasonal
drift with solar heating of the instrument.
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CCAST SDR Cal Approach for This Work

ES — SP

Foe = F-Fer - f-SA™! . f.
o8BS cr - f f T —sp

¥ops IS calibrated radiance at the user grid

F is Fourier interpolation from sensor to user grid
f is a raised-cosine bandpass filter

Ficr is expected ICT radiance at the sensor grid
SA~! is the inverse of the ILS matrix

ES is earth-scene count spectra

IT is calibration target count spectra

SP is space-look count spectra
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Periodic Sinc Applied to High-Resolution Spectra

@ Periodic sinc (psinc) is the correct basis for the instrument line shape
(ILS)

@ Thanks to Dan Mooney, see next talk

@ IDPS and previously CCAST used sinc, not psinc

Two metrics for spectral performance

Observed - Computed (NWP) Standard Deviation of FOV5-FOVn
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Periodic Sinc: Details

Bias Psinc/sinc - Bias Hamming Observed - Computed (NWP)
A clean metric for excess ringing Psinc apodized to Hamming
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@ This is a major improvement to the high-resolution short-wave data

@ Periodic sinc mostly improves corner FOVS, where the self-apodization
correction is largest, SA matrix is more poorly conditioned.

@ Should help improve absolute spectral calibration once CrlS is in
high-resolution mode
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FOV7 Non-Linearity in High-Resolution Data

@ High-res mid-wave water vapor line centers very cold

@ Below: Std. Dev. of FOV5-FOVn for global data set. IDPS
non-linear coefficients (Feb. 20, 2014 +).

@ FOV7 non-linearity may need a more refined correction
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Periodic Sinc Applied to Normal Resolution SDRs

Bias Psinc/sinc - Bias Hamming Difference of abs(ringing metric)
(ringing metric) (IDPS minus CCAST)
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@ Periodic sinc only clearly better at high wavenumber end of mid-wave band
and most of short-wave band.

@ Other contributors to non-sinc ringing dominate
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CrIS/AIRS SNOs using Native CrlS ILS

@ Intercalibration of AIRS and CrIS can only be done with L1b
data in winow regions.

@ ILS (Instrument Line Shape) differences cause large (4+K)
differences between AIRS and CrlS for

@ We convert AIRS (L1¢) radiances using a deconvolution,
reconvolution approach.

@ The AIRS—CrlS data may provide the best approach for
building a seamless AIRS + CrIS L2 time series.
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AIRS L1c: Mismatch due to ILS Differences

Sampling of AIRS vs CrIS ILS B(T) error using just v interpolation

Errorin K
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AIRS — CrIS Conversion

This topic is beyond the scope of this talk, so just a summary.

Basic methodology

Let S, be a matrix whose rows are AIRS SRFs on a 0.1 cm~! grid, ¢
AIRS channel radiances, and r radiances on the same 0.1 cm™'
grid. Then we can write

c=S,r,

expressing the channel radiances as the convolution of observed
radiance. In practice we have ¢ and don’t know r, but we can
approximate it by taking the pseudo-inverse S;! and applying it to
(o8

r=5,"c

This is the deconvolution. This regularly spaced r can then be
convolved to CrlS radiances at the user grid, taking into account
band differences. The key in practice is that the L1c channel set
gives a relatively well-conditioned S,.
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Example of De-convolved AIRS Spectrum
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Example of AIRS L1c and Conversion to CrIS
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Example of AIRS L1c and Conversion to CrIS
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Example of AIRS L1c and Conversion to CrIS

L1b + L1c + L1c—CrIS
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Example of AIRS L1c and Conversion to CrIS

L1b + L1c + L1c—CrIS + CrlIS

) —— AIRS->CrIS
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Example of AIRS L1c and Conversion to CrIS

L1c—CrIS + CrIS
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Full Spectrum Differences (pre-Feb. 2014 Non-Linearity)

Hamming Apodization
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0.2K “ringing” may be due to lack of frequency calibration

The standard error is extremely small. £50°latitude SNOs, 2
million+ samples.
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Full Spectrum Differences (post-Feb. 2014 Non-Linearity)
Day versus Night
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@ Differences between CrlS vs AIRS day/night larger than statistical errors

@ Thermal issues on one of these instruments?

@ NWP day vs night biases similar for AIRS, CrlS in 650-700 cm~' region, but
very different for water vapor due to sampling differences

@ AIRS “ringing” due to me not doing AIRS frequency calibration before
forming SNOs. TBD.
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CrIS Radiometric Stability

Relative to SST, CO;
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@ Tropical ocean clear

@ 1-Year differences far below
0.1K. Red curve is smoothed
time series.

B(T) Change in CO, Line Depth
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@ CO; from ECMWF bias (791.5

cm™') - 0.27*bias(790 cm~').

@ Second term removes any SST,

H, O variability.

@ Oct 2012 through Oct 2013

shows 2.5 ppm growth rate
(0.06K).
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Conclusions

@ CrIS spectral calibration continues to be stable and accurate

@ UMBC will complete full analysis of Neon stability in the near
future using CCAST

@ CrIS high-resolution short-wave SDRs improved using period
sinc basis function for apodization corrections.

@ FOV-7 improvements needed for high-spectral resolution
mode.

@ AIRS/CrIS SNOs exhibit ~ +0.1K agreement on a
channel-by-channel basis with AIRS (~1080 channels).

@ AIRS/CrIS comparisons will improve once AIRS SNOs are
frequency calibration (by UMBC).

@ AIRS — CrIS conversion will make a combined AIRS, CrIS
radiance climate data set possible, now at 11+ years length.
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